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UNIFORM LOCAL RESPONSIVITY 

OF DETECTOR'S BY SCANNING 

by 
Mitchell W. Finkel 

Goddard Space Flight Center 

INTRODUCTION 

Transmittance and reflectance measurements of scattering materials or  rough surfaces re- 
quires complete impartiality of the detector with respect to the distribution of the intercepted 
radiant flux. Only in a few special cases, such as a perfectly specular surface o r  for a uniform 
flux distribution as in the case of an integrating sphere, can this problem be ignored. The problem 
can often be minimized if some pre-selected area of the detector is consistently referred to. But 
this procedure is not always feasible with hemispherical or ellipsoidal collectors. Generally, the 
distribution of the incident and transmitted or reflected flux will be vastly dissimilar. Conse- 
quently, uniform local responsivity is a matter of paramount importance. Yet, polycrystalline as 
well as large a rea  single-crystal detectors are  notoriously nonuniform. (l) We need only compare 
the efficiency and spectral range of say an ellipsoidal reflectometer and the usual integrating 
sphere photometer to appreciate the importance of the problem. A method is outlined here that 
can effectively achieve uniform local responsivity without accepting the limitations inherent in 
such devices as diffusing screens, and averaging spheres usually employed to obviate this problem. 
The central concept r e s t s  upon our viewing the local responsivity of the detector and the inter- 
cepted radiant flux as two random variables. it wiii then be shvwn huw scanriiiig c&ii i i ike the de- 
tector a completely impartial arbiter. 

SCANNING THEORY 

In a very real sense every physical measurement is ultimately a random variable. W e  can 
cite scattering and the local responsivity of a typical lead-compound film detector as obvious ex- 
amples. In both of these cases observable variations will  exist which do not readily submit to an 
explicit description. (2) For example, in a given measurement, the spectral response, modulation 
frequency, signal-to-noise ratio, angular dependence, and detector linearity a r e  factors which in 
concert tend to introduce a chance mechanism such that we cannot assign with assurance a definite 
set  of values to the local responsivities of the detector. Consequently, we choose to view both the 
distribution of intercepted radiant flux and the variation of detector's local responsivity as two 
random variables which we will refer to respectively as cp and 6,. Since the scanning process 
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converts position fluctuations to time fluctuations, we can in what follows replace length by t ime 
as a parameter. 

J 

- 1 2 3 4 5 6 7 e . N  

Now let us  consider a narrow strip arbitrarily selected from a detector. Conceptually, we 
will view this strip as an array of N elemental detectors as shown in Figure 1. Similarly, we will 
view the flux intercepted by the strip as if composed of N elements. If we assume that the prob- 
ability density, PE ( x ,  t l )  is invariant with time, the average of a stationary random variable is 
given by, 

FLUX ELEMENTS DETECTOR ELEMENTS 

Figure 1 -Conceptual division of intercepted flux and detector into N elements. 

The mean of the product of two random variables can be expressed as, 

where r is a time displacement. If, however, the variables Ep, 6, a r e  statistically independent, 
as they are assumed to be in our case, the conditional density Pc 

unconditional density, and Equation (2) can be written as,  
( x ,  y ;  r )  can be restated as an 

P R  
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Referring to (l), we have the important and quite desirable result, 

That is, the mean of the product of two statistically independent random variables is the product 
of their mean values.(3) We can illustrate the significance of (4) by considering an integrating 
sphere. Since the radiance of the sphere wal l  is perfectly uniform, 

so that, 

(cp) = F x P i .  (xi) 6 (x- xi) dx xi 
0 

Now, i f  a reflectance o r  transmittance measurement is made, we have since (cR) = (6;) , 

where 5, and 6; refer to the incident and reflected o r  transmitted flux. 

We will now show how scanning can determine (Ep> and (6;). . .  As shown in Figure 2 the de- 
tector is slowly translated across the radiant flux. Following th is  process, we can write for the  
i t h  strip, 

= Pi ,  R i 3  + P i ,  R i 2  + P i 3 R i l  
'( 3)At  

= . . .  
= . . .  
= . . .  

'(ZN-2 ) A t  = pi ( N - 1 )  R i N  'iN R~ ( N - 1 )  

"(2N-  1 ) n t  = pi, R i N  
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FLU)( DETECTOR 

OUTPUT VOLTAGE 

Figure 2-Flux-detector interaction and resulting output voltage. 

where P is the radiant flux intercepted by the detector, R the  responsivity, and v the voltage out- 
put. Collecting and rearranging t e rms  we can also write: 

o r  

Pi ,  ( R i l  + R i 2  + * * -  + R I N )  f 

Pi, (R i l  + R i z  + + R i N )  f 

t . .  . 
t 

t 

. .  . 

. .  . 

= (pi, +pi ,  +pi ,  t + P i N )  (Ri, + R i 2  'Ri, ' * * '  t R i ~ )  

k = l  

(5) 

Let us  now consider the set of values ( R i l  t R ~ ,  t t R i N ) .  Since the order of summation is 
not important, we can group all R i  , values according to their magnitudes, m Ax and collect all Nm 
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elements possessing this magnitude. Then, 

L R i j  = m DxN, 
j = 1  m = l  

and 

where M, is the total number of elements. 

But (N , / M ,  Ax) is an estimate of the probability density PE (x). It therefore follows that 

N r A  

It is worth reiterating that 

do not constitute a definite set of values. We have only to  consider the spectral response of the 
detector t o  substantiate this point. Treating the P i j  values in  a like manner we have, 

We now will show how the scanning process can be used for a given ratio measurement. Let 

Pij  and P,; r e fe r  to the incident and reflected flux. Our purpose will be to determine the radiant 
reflectance, p. Concerning the number of elements M,, Mi, M, and M$ , obviously, M i  = M , .  Now, 
suppose in  a given measurement, M i  # M , ,  and further, M i  # M, and M, # M,.  We can then intro- 
duce N fictitious elements of zero magnitude such that M, = M i  = M, = M,' . Consequently, 

5 



But, since we can assume that 

This result is really not surprising. Were it not for the fact that statistically independent vari- 
ables have zero correlation, we would certainly identify the process outlined as cross  correlation. 
For essentially, cross-correlation is an averaging process in which one function maybe thought of 
as the scanhing function of the other. 

Ordinarily, each detector element is paired with but one flux element. Scanning, even if it 
involves a single pass, pairs each flux element with all the detector elements in a given strip. 
While it is reasonable to assume that the deviation between s t r ips  will  be less than between in- 
dividual elements, the fact remains that deviations will ordinarily exist. If we now consider the 
entire intercepted flux and detector, (7) becomes, 

where 

and A R ~  is the fluctuation in the i th  strip about (R). If all the fluctuations, A R i  are small, o r  if 
they are equally likely in either directions, the e r r o r  in our ratio measurement will be negligible. 

EXPERIMENT 

It is apparent from Equation (8) that the e r r o r  for a given ratio measurement depends upon 
the fluctuations, ARi . Consequently, detector orientation is an extremely critical factor since it 
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is the simple t method of arranging the R i  values. This point is clarified by Figure 3 where we 
have plotted the average response of the rows and columns of our detector. Initially, a sensitivity 
contour was made, which, after appropriate normalization, was mapped as shown in Figure 4 for 
computational purposes. The detector was mounted on a traveling carriage as illustrated in Fig- 
u re  5,  and a scan rate  of approximately 0.2 cm per minute adequately accommodated even the 
slowest response t ime of any component in our system. A typical response curve resulting from 
the signal-detector interaction is shown in Figure 6. The area under each response curve, which 
is proportional to 

was integrated with a planimeter. 

Briefly, the procedure used to  ascertain the value of the scanning process was as follows. A 
180" ellipsoidal collector was used to measure the transmittance of a scattering material. Inci- 
dent and transmitted flux measurements were made using scanning and non- scanning techniques. 
The resul ts  of these measurements were then compared to transmittance measurements made 
with a small  averaging sphere which were accepted as a standard. On repeated measurements a 
12% e r r o r  for the non-scanning technique was fairly consistently reduced to about 4% for the scan- 
ning techniques. 
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Figure 3-Average relative response of the rows and 
columns of the detector shown in Figure 4. 

Figure 4-Range distribution of a typical lead 
sulfide detector (10 x 10 rnrn) responsivity. 
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Figure 5-Schematic representation of the scanning process. 
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Figure 6-Typical response curve of the scanning process. 
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CONCLUSIONS 

It appears that the e r r o r  resulting from local nonuniform responsivity of the detector can be 
substantially reduced, provided the R i  values are reasonably well matched. This is a f a r  less 
stringent requirement than complete uniformity. There is, of course, no reason to restrict  this 
approach to a single element detector. Indeed, its most practical application would be with multi- 
element o r  mosaic type detectors. For now all the R i  values could be more satisfactorily matched. 
Furthermore, the null regions between individual elements would now become an integral part of 
each R i .  Returning to Figure 3, we could, by the simple expedient of masking off a few elements 
in each of the indicated columns, reduce the fluctuations, m i ,  so that, effectively, all R i  = (R) 

without seriously affecting the detectors responsivity. It should be noted that the response variation 
of our detector was about *35%. Obviously, smaller e r r o r s  result from smaller variations. 
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